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Abstract

This paper presents new vector quantization based meth-

ods for selecting well-suited data for hand-eye calibra-

tion from a given sequence of hand and eye movements.

Data selection can improve the accuracy of classic hand-

eye calibration, and make it possible in the first place in

situations where the standard approach of manually se-

lecting positions is inconvenient or even impossible, es-

pecially when using continuously recorded data. A vari-

ety of methods is proposed, which differ from each other

in the dimensionality of the vector quantization com-

pared to the degrees of freedom of the rotation represen-

tation, and how the rotation angle is incorporated. The

performance of the proposed vector quantization based

data selection methods is evaluated using data obtained

from a manually moved optical tracking system (hand)

and an endoscopic camera (eye).

1 Introduction

Hand-eye calibration, which has classically been used

for calibrating the rigid transformation from the tip of a

robot manipulator arm to a camera mounted on the arm,

becomes more interesting for applications where simi-

lar problems arise, but which are not directly related to

robotics. Examples include hand data provided by an op-

tical tracking system instead of a robot, where the camera

is mounted on an endoscope and moved manually as in

Vogt (2006) or Schmidt et al. (2004), an inertial sensor

mounted on a camera as in Aron et al. (2004), or even

self-calibration of a rigid stereo camera system, where

one camera can be treated as the “hand”, and the other as

the “eye” as in Luong and Faugeras (2001) and Schmidt

(2006).

A problem that is common to all hand-eye calibration

algorithms is that the quality of the result is highly depen-

dent on the data used for computing the unknown trans-

formation. The usual approach for solving this prob-

lem is to use robot movements that already take the re-

strictions on the data into account, which means that the

movement has to be planned before recording. Sugges-

tions how this can be achieved were already given in one

of the original publications on hand-eye calibration by

Tsai and Lenz (1989). In situations where planning such

a well-suited movement is not possible (e. g., due to con-

straints on the available space) or cannot be controlled

well (e. g., when using a hand-held camera), methods for

data selection are required in order to get high-quality

calibration results. In particular in situations where the

camera records images at frame rates of 25 images per

second while the camera is moving continuously, using

the movements in temporal order is a bad choice.

Therefore, performing a data selection step before the

actual hand-eye calibration is essential in these cases. We

present a variety of new methods for automatic selection

of well-suited data based on vector quantization. Us-

ing any of them before the actual hand-eye calibration

makes calibration of continuously recorded data possi-

ble in the first place. And, as we will show in the ex-

periments section, even when only a small number of

planned poses are used as in the classic approach to ac-

quiring data, running the proposed data selection algo-

rithms can lead to an increase in accuracy. The algo-

rithms presented here have been developed by Schmidt

(2006). They have been partially revised, particularly

making the automatic threshold computation (Sect. 3.5)

more effective, and new experimental results will be pre-

sented in this article.

The problem of automatic data selection was already

addressed in Schmidt et al. (2003), where it is applied

in hand-eye calibration of an endoscopic surgery robot.

This method first removes relative movements1 with

1a relative movement is defined by the rotation and translation be-
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2 Hand-Eye Calibration

small rotation angles using a fixed threshold. After this

pre-selection step, pairs of relative movements are rated

according to their suitability for hand-eye calibration.

The goal is to use the best fraction of pairs for comput-

ing the hand-eye transformation. As a rating criterion it

is proposed to use the scalar product between the rotation

axes of two relative movements. A worst case estimate

(if no movements are eliminated during pre-selection

w. r. t. angle) of the time complexity of this approach is

O(N 4), N being the number of poses contained in the

original input sequence. The method is more or less a

brute-force approach; it cannot compete in computation

time (or accuracy) with the vector quantization methods

that we present in this article. Another problem is that al-

ways well-matching pairs of relative movements are se-

lected, where one relative movement may be contained

in multiple pairs. The pairs are afterwards used to form

a linear system of equations for solving for the hand-eye

transformation. Since each relative movement results in

one equation, it may happen that one movement is used

more than once, leading to two linearly dependent equa-

tions, one of them being redundant.

We have presented the first vector quantization based

data selection method in Schmidt et al. (2004). This

method is also described in the article at hand (Sect. 3.3).

The pre-selection of movements using a fixed threshold

has been adopted in Schmidt et al. (2004), while now an

algorithm for computing a suitable threshold automati-

cally is used. Schmidt et al. (2004) also contains an ex-

perimental comparison with the approach published in

Schmidt et al. (2003); it concludes that the latter cannot

compete with the vector quantization method at all, the

calibration results are mostly worse than for the vector

quantization based methods.

Zhang et al. (2005) and Shi et al. (2005) have also

presented an iterative method for data selection in hand-

eye calibration. Their method considers pairs of move-

ments and rates their suitability for hand-eye calibration

by comparing the angle between the two rotation axes,

the rotation angles, and the norm of the translation vec-

tors to thresholds. In contrast to that our vector quanti-

zation based approach does not only rate pairs, but takes

into account all available movements on a global scale.

The remaining paper is structured as follows: A short

introduction into hand-eye calibration will be given in

Sect. 2, including a brief literature overview and explain-

ing the critical factors that influence calibration accuracy.

Section 3 described the new proposed data selection al-

gorithms based on vector quantization. Experimental re-

sults, including a comparison to classic hand-eye cali-

bration without data selection, are presented in Sect. 4.

The paper concludes with Sect. 5. As the proposed al-

tween two given poses; see also Sect. 3.1.

gorithms make excessive use of different representations

of 3D rotations, we have included a short introduction

for readers not familiar with these representations in Ap-

pendix A.

2 Hand-Eye Calibration

2.1 Overview

The hand-eye calibration problem can be formulated as

follows: Given a robot manipulator arm and a camera

mounted on that arm, compute the rigid transformation

from arm to camera, also called hand-eye transforma-

tion. Knowledge of this transformation is necessary for

computing the camera pose from the pose of the robot

arm, which is usually provided by the robot itself, while

the pose of the camera is unknown. Once the hand-eye

transformation is known, the camera pose is easily com-

puted from the pose information provided by the robot.

The first hand-eye calibration methods were published

by Shiu and Ahmad (1989), and Tsai and Lenz (1989);

an early comparison of the methods available at that time

was given in Wang (1992). The hand-eye calibration

problem was formulated by Shiu and Ahmad (1989) as

a matrix equation of the form

TETHE = THETH , (1)

where TH is the robot arm (hand) movement, TE the cam-

era (eye) movement, and THE is the unknown hand-eye

transformation, i. e., the transformation from gripper to

camera2. Each matrix Tχ is a rigid transformation in ho-

mogeneous form, i. e.,

Tχ =

(
Rχ tχ

0
T
3 1

)
, χ ∈ {H,E,HE} . (2)

The transformations Tχ consist of a 3×3 rotation matrix

Rχ and a 3D translation vector tχ; 03 denotes the 3D

null-vector.

The straightforward way for solving (1) is to split it

into two separate equations, one that contains only rota-

tion, and a second one that contains rotation and transla-

tion, which results in:

RERHE = RHERH , (3)

(RE − I3×3)tHE = RHEtH − tE , (4)

where I3×3 denotes the 3 × 3 identity matrix. Thus,

the rotational part RHE of the hand-eye transformation

can be determined first from (3), and, after inserting it

into the second equation (4), the translational part tHE is

computed. This is how hand-eye calibration is done by

2note that in some publications THE is the transformation from camera

to gripper.
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2.2 Critical Factors

Shiu and Ahmad (1989); Tsai and Lenz (1989); Chou and

Kamel (1991); Wang (1992). Various parameterizations

of rotation were applied (see Appendix A for an intro-

duction): The original works of Shiu and Ahmad (1989),

and Tsai and Lenz (1989) use the axis/angle representa-

tion; quaternions were used by Chou and Kamel (1991),

and Horaud and Dornaika (1995). Dual quaternions were

introduced by Daniilidis (1999, 2001).

In contrast to the former approaches, it was suggested

by Chen (1991) that rotation and translation should be

solved simultaneously, not separately. This approach is

also followed by Horaud and Dornaika (1995), where a

non-linear optimization of rotation and translation is per-

formed. An online calibration method based on Kalman-

filtering was proposed by Andreff (1997). Daniilidis

(1999, 2001) introduced a hand-eye calibration algorithm

based on dual quaternions that is also capable of handling

rotation and translation simultaneously, but, in contrast

to the former approaches, a linear solution is given. A

method based on screw motions very similar to Dani-

ilidis’ dual quaternion algorithm can be found in Zhao

and Liu (2006). Fassi and Legnani (2005) present a geo-

metric interpretation of the original hand-eye calibration

equation and analyze its properties.

Commonly, hand-eye calibration methods rely on the

fact that the movement of the robot manipulator arm is

provided by the robot, while the camera movement is

computed using a calibration pattern and classic cam-

era calibration methods, such as Tsai (1987); Zhang

(1998, 2000). Andreff et al. (1999, 2001) and Schmidt

et al. (2005) presented approaches that obtain the camera

movement not by using a calibration pattern, but from

point feature tracking and a structure-from-motion tech-

nique (see Faugeras and Luong (2001); Hartley and Zis-

serman (2003) for an introduction). In this case a scale

factor has to be estimated additionally, thus making the

problem very similar to the self-calibration of a rigid

stereo-camera system (Luong and Faugeras, 1993, 2001;

Faugeras and Luong, 2001; Dornaika and Chung, 2003;

Schmidt, 2006).

2.2 Critical Factors

Regardless which algorithm is actually used, one impor-

tant constraint is always valid for solving the general

hand-eye calibration problem: At least two movements

of the robot manipulator are necessary, where the axes

of the rotations are non-parallel; this was shown by Tsai

and Lenz (1989), and by Chen (1991). If the movement

is not general enough, the hand-eye parameters can be re-

covered only partially; for details see, e. g., Andreff et al.

(2001).

The critical factors and criteria for improving hand-

eye calibration accuracy were already given by Tsai and

Lenz (1989):

1. Maximize the angle between rotation axes of rela-

tive movements (influence on error in rotation, no

translation recovery possible for parallel axes),

2. Maximize the rotation angle of relative movements

(influence on error in rotation and translation),

3. Minimize the distance between the optical center of

the camera and the calibration pattern (influence on

error in translation),

4. Minimize the distance between the gripper coor-

dinate system positions, i. e., small translational

movement of the hand (influence on error in trans-

lation).

More details as well as an error analysis can be found

in Tsai and Lenz (1989). If the movement of the robot

gripper can be planned in advance, all items above may

be controlled by the user. The usual way to fulfill the

data requirements in robot hand-eye calibration is to use

a calibration setup where the different positions of the

gripper are chosen such that the data is well-suited for

calibration. Such a setup is described, e. g., in Tsai and

Lenz (1989).

In situations where planning movements is not pos-

sible or gripper movement is confined to certain areas,

often not all criteria above can be controlled as de-

sired. Particularly when hand-eye calibration is done

for devices other than robot manipulator arms, controlled

movements may be not possible at all or only with very

low accuracy. An example of such an application that be-

comes more popular is the calibration of an optical track-

ing system (basically a camera) and an endoscope (optics

and endoscopic camera). A so-called target, which con-

sists of retroreflective markers, is mounted on the endo-

scope. Its 3D pose can then be determined by the opti-

cal tracking system. In this setup, the hand data is pro-

vided by the tracking system, the eye data by the endo-

scopic camera. Therefore, with a known hand-eye trans-

formation, the movement of the endoscopic camera can

be computed from the movement of the target. The en-

doscope is normally moved manually, and its exact pose

cannot be controlled. For more details see Schmidt et al.

(2004); Vogt (2006).

Another application is self-calibration of a stereo-

camera system as discussed in Schmidt (2006). In this

case, the rigid transformation between two cameras is

estimated based on image information only, without us-

ing a calibration pattern. The cameras are either moved

manually or implicitly by the head movement of a user

in an Augmented Reality setting. Controlling criterion

(3) in such a setup is usually not feasible: It would mean

minimizing the distance of the cameras to the observed
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3 Data Selection

scene, which would restrict the freedom of the user’s

movements considerably, rendering one of the main ad-

vantages of a self-calibration approach useless.

However, the main difference between these new ap-

plication areas and classic hand-eye calibration is the

way data is recorded. In a traditional setup, images of a

calibration pattern are acquired at a comparatively small

number of positions, say 20. In an Augmented Reality

setting, where the user wearing a stereo camera is al-

lowed to move freely, images are recorded at a rate of

25 or 30 frames per second. This results in an amount of

data higher by one to two orders of magnitude, recorded

at more or less arbitrary positions. Also, having a con-

tinuous movement where rotation and translation change

only slightly between two consecutive frames, a trade-off

between requirements (1) and (2) on one side and (4) on

the other side has to be taken into account.

3 Data Selection

In this section various data selection algorithms will be

presented that select a globally consistent set of relative

movements that optimizes the non-parallelism criterion

(1) as well as the rotation angle criterion (2) from Sect.

2.2. Criterion (1) is considered to be the most important

one here, since no recovery of the hand-eye translation is

possible if the rotation axes used are parallel.

3.1 Pre-Processing

The main purpose of the algorithms presented in this

paper is increasing the hand-eye calibration accuracy

when the hand positions were recorded continuously, and

therefore consecutive poses differ only minimally. Given

the criteria from Sect. 2.2, it can be expected that pro-

cessing the data in temporal ordering is suboptimal; this

is supported by the experimental results presented later

on, hence using these readily available movements be-

tween consecutive poses cannot be recommended. De-

ciding which data, i. e., relative movements, should be

used as input for the data selection method instead is

an important step that has considerable influence on the

performance of the algorithm. It has been proposed by

Schmidt et al. (2003) to consider all possible relative

movements between the recorded hand poses that are

contained in the data and use these as input for the data

selection algorithm. Given two robot gripper poses at

time i and j consisting of rotation Ri, Rj and transla-

tion ti, tj , the relative movement given by Rij , tij can

be computed as follows:

Rij = RT
j Ri (5)

for rotation and

tij = RT
j (ti − tj) = RijR

T
i (ti − tj) (6)

for translation.

For N poses, the total number of all relative move-

ments is N(N − 1)/2, i. e., the time complexity of the

pre-processing step equals O(N2).

3.2 Vector Quantization – Overview

The basic idea of the following algorithms is: Given a set

of Nr relative movements represented by their rotation

axes, compute a new set of distinct axes consisting of Ns

vectors, where Ns < Nr. This is achieved by running

a clustering algorithm on the vectors representing axes,

which computes a partitioning of the axes vectors.

A method which is suited very well for this task is vec-

tor quantization (see Linde et al., 1980). Note that al-

though we propose to use vector quantization (and the

LBG algorithm mentioned later), this should be seen as

an example rather than a strict condition for data selec-

tion; in fact, any clustering algorithm can be applied.

In general, vector quantization works as follows: An

input vector x ∈ IRn is mapped to a vector of the so-

called codebook C = {c1, . . . , cNs
}, which is a set of Ns

n-dimensional vectors that define a partitioning of IRn.

Given a distance measure d(·, ·) on vectors in IRn (usu-

ally Euclidean distance), the input vectors are mapped as

follows:

x 7→ cκ, where d(x, cκ) < d(x, ci)

∀i = 1, . . . , Ns, i 6= κ .
(7)

Thus, the entries of the codebook C are the cluster centers

in IRn. For finding the entries of the codebook the well-

known LBG algorithm (named after the authors Linde,

Buzo, and Gray, see Linde et al. (1980)) is used, which is

an iterative method that computes the codebook given the

desired number of codebook entries. The complexity of

the LBG algorithm for each iteration is O(NrNs), which

equals O(N2Ns). Note that the number of movements

Nr is reduced further considerably by a pre-selection step

removing movements with small rotation angles as de-

scribed in the following section.

Various algorithms based on this idea are presented in

the following. They differ in the input data used as well

as in the dimensionality of vector quantization.

3.3 Three-Dimensional Vector Quantization of

Normalized Rotation Axes

The vector quantization based data selection algorithm

presented in this section requires 3D rotation axes ri hav-

ing norm one computed from relative movements as in-
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3.3 Three-Dimensional Vector Quantization of Normalized Rotation Axes

Input:

Nr relative movements consisting of rotation and translation Ri, ti (cf. Sect. 3.1),

θt = threshold for pre-selection according to rotation angle,

Ns = number of desired relative movements after data selection is complete (codebook size).

Output:

Ns relative movements consisting of rotation and translation Rκ, tκ.

FOR each relative movement i

Compute axis ri (norm one) and angle θi from Ri

IF |θi| < θt OR (|θi| > 180◦ − θt AND |θi| < 180◦ + θt) OR |θi| > 360◦ − θ

THEN Rotation angle too small: remove movement i from data set

ELSE Resolve ambiguities (restrict to a single hemisphere)

Compute codebook C = {c1, . . . , cNs
} of size Ns using the remaining ri as training vectors

FOR each remaining axis ri

Classify ri to one of the partitions represented by codebook vector cκ: ri → ri,κ

Compute the distance d(ri,κ, cκ)

FOR each codebook entry cκ

Determine rκ = rj,κ, where d(rj,κ, cκ) < d(ri,κ, cκ) ∀i, j of partition κ, i 6= j

Select the relative movement Rκ, tκ that corresponds to rκ as one of the resulting movements

Figure 1: Structure chart for data selection using a 3D vector quantization of normalized rotation axes.

put data. This algorithm was first published in Schmidt

et al. (2004).

Before selecting the movements according to their

non-parallelism, a pre-selection is done according to

their rotation angle, because for angles close to zero the

rotation axis is not well-defined (see Appendix A.2). For

an angle of 180◦ singularities in hand-eye calibration

arise (Shiu and Ahmad, 1989; Daniilidis, 1999) These

are exactly the cases where the rotation matrix has mul-

tiple real Eigen-values. This step removes these move-

ments, thus optimizing criterion (2). Movements are

discarded that have rotation angles greater than a given

threshold θt and less than 180◦ − θt or higher than

180◦ + θt and less than 360◦ − θt. The second interval is

due to the fact that a rotation about an axis r by an angle

θ is the same as a rotation about the axis −r by the angle

360◦ − θ. After the pre-selection step, only the rotation

axes (normalized to one) are used for further processing.

The complete algorithm is shown in Fig. 1.

After pre-selection according to rotation angle and

normalization of the rotation axes to one, the ambigu-

ity in the axis/angle representation is resolved to make

sure that similar rotation axes are actually close to each

other in 3D. Since all normalized rotation axes ri =(
rix riy riz

)T
lie on a sphere in 3D space, this can

be achieved by restricting the axes to one hemisphere.

Here, w. l. o. g. the hemisphere with non-negative riz-

coordinate was chosen. If this coordinate of an axis ri

is negative, the axis ri is substituted by −ri. Rotation
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θt = 15
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Figure 2: Examples of vector quantization result in 3D based

on real data: The input data (rotation axes of norm one) in (a),

(c) are shown as small dots, the codebook are plotted in (b), (d)

as bold dots. Because of the normalization of the axes to one,

all vectors lie on a sphere.

axes having a zero riz-coordinate have to be handled sep-

arately by checking the riy- and rix-coordinates.

The next step is training the vector quantizer, i. e.,
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3 Data Selection

computation of the codebook vectors C, which results in

a clustering of the rotation axes. Note that since all axes

have norm one, the vectors are not uniformly distributed

in space, but lie on the surface of the unit sphere. An

example obtained from real data is depicted in Fig. 2.

For the data set shown in Fig. 2(a) no pre-selection of

the data with respect to small rotation angles was done,

i. e., all relative movements were used as input for vector

quantization. The resulting codebook is plotted in Fig.

2(b). Figure 2(c) shows the same data set, where relative

movements having a rotation angle smaller than 15◦ have

been removed, and the generated codebook is depicted in

Fig. 2(d).

In many algorithms that apply vector quantization, the

codebook vectors can be directly used for further pro-

cessing; note that this is not the case for data selection as

described here. Codebook vectors are computed as the

center of gravity (i. e., mean values) of all input vectors

belonging to a certain partition. Therefore, a codebook

vector usually does not coincide with an element of the

input vector set, which means that it cannot be related

to an actual relative movement. Additional steps have

to be taken in order to obtain a single rotation axis (and

the associated relative movement) per partition: Firstly,

each rotation axis ri has to be classified to one of the

partitions defined by the codebook vectors. The classi-

fied axes are denoted by ri,κ. Secondly, for each rotation

axis ri,κ of a partition κ, the distance to the codebook

vector cκ representing that partition is computed; the se-

lected axis is the one where the distance to the codebook

vector d(ri,κ, cκ) is smallest. The relative movements

belonging to the rotation axes selected this way can now

be used for hand-eye calibration.

3.4 Two-Dimensional Vector Quantization of

Normalized Rotation Axes

The data selection algorithm presented before uses nor-

malized rotation axes as input, where the rotation angle

is not encoded in the axis but handled separately, an axis

being a 3D vector with only two degrees of freedom.

Hence, the dimensionality of the vector quantization can

be reduced from three to two by using an appropriate pa-

rameterization of the axes. An obvious choice for this

task are polar coordinates. Given a rotation axis r, the

polar coordinates λ, ρ of r are computed as:

λ = arctan
ry

rx

, ρ = arcsin rz . (8)

The data selection algorithm using polar coordinates is

similar to the one before (shown in Fig. 1). The main dif-

ference is that an additional computation step preceding

the codebook generation has to be introduced that con-

verts the normalized rotation axes ri to polar coordinates
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(a) No threshold on rotation angle,

i. e., θt = 0
◦
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(b) Threshold of θt = 15
◦

Figure 3: Examples of vector quantization result using polar

coordinates based on real data: The input data, i. e., normalized

rotation axes converted to polar coordinates, are represented by

the small dots, the codebook vectors are plotted as bold dots.

The angles λ and ρ are given in rad.

using (8). This reduces the dimensionality of the follow-

ing vector quantization, as only 2D vectors that contain

the angles λi and ρi are used.

An example of a vector quantization result using polar

coordinates is shown in Fig. 3. The same data set as in

Fig. 2 was used.

3.5 Automatic Computation of Rotation Angle

Thresholds

A drawback of the two data selection algorithms pre-

sented in Sects. 3.3 and 3.4 is that a threshold θt for the

rotation angle has to be set manually. There are mainly

two ways to improve the algorithm:

1. Use a threshold, but compute it automatically from

the available data.

2. Do not use a threshold at all, i. e., all data are used

for vector quantization; the rotation angle is taken

into account implicitly by an appropriate parame-

terization.

The former is discussed here; algorithms using the sec-

ond option are shown in Sects. 3.6 and 3.7.

In the data selection algorithms presented before a sin-

gle threshold was used, which is applied to the lower (0◦,

360◦) and upper (180◦) bounds of the rotation angle in-

terval symmetrically. The best-suited movements have

rotation angles located in the center of the two intervals

at 90◦ and 270◦. The algorithm for automatic thresh-

old computation is different in two ways: Two separate

thresholds for the upper and lower bound are calculated,

and these are not necessarily symmetric. The structure

chart for automatic threshold computation is shown in

Fig. 4.

The algorithm requires the desired remaining fraction

of movements to be specified as an input parameter. This

is a clear advantage over using a threshold for the angle
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3.5 Automatic Computation of Rotation Angle Thresholds

Input:

Nr relative movements consisting of rotation and translation Ri, ti (cf. Sect. 3.1),

δ = desired remaining fraction (0 to 1) of relative movements after pre-selection.

Output:

θu, θl = upper and lower threshold for pre-selection according to rotation angle.

FOR each relative movement i

Compute rotation angle θi from Ri

Take absolute angle, i. e., θi := |θi|
IF θi > 180◦

THEN Normalize angle to interval 0◦ to 180◦: θi := 360◦ − θi

Store angle θi in a list L (indexed from 0, . . . , Nr − 1)

Sort list L (ascending)

αl := L(0), αu := L(Nr − 1)

IF αl > 90◦

THEN θl := 0◦, θu := 180◦ − L((Nr − 1) − Round((1 − δ) · (Nr + 1)))

ELSE IF αu < 90◦

THEN θl := L(Round((1 − δ) · (Nr − 1))), θu := 0◦

ELSE IF αl ≤ 90◦ AND αu ≥ 90◦

THEN Find index i, where L(i) ≥ 90◦ and L(j) < 90◦ ∀j = 0, . . . , i− 1

Compute fractions ξl, ξu of list elements left and right of i (cf. (9))

Compute fractions ρs, ρb to be removed on left and right (cf. (10))

IF ξl ≥ ξu

THEN θl := L(Round(ρb(Nr − 1)))

θu := 180◦ − L((Nr − 1) − Round(ρs(Nr + 1))

ELSE θl := L(Round(ρs(Nr − 1)))

θu := 180◦ − L((Nr − 1) − Round(ρb(Nr + 1))

Figure 4: This structure chart shows an algorithm for computing upper and lower rotation angle thresholds θu, θl automatically.

directly: When an explicit angle threshold is provided,

more often than not it will be chosen either too high or

too low, as we have no a-priori knowledge on the data

used for calibration. If the threshold is too high, there

may be no movement left after applying the threshold,

which makes calibration impossible. If chosen too low,

possibly lots of movements are processed further that are

actually not very good and thus distort the calibration

result. Since the rotation angles are highly dependent

on the recorded image sequence, a general recommenda-

tion for choosing a threshold on the angle is not possible.

In contrast, specifying a percentage of movements that

are to remain after pre-selection allows choosing the best

ones while it is guaranteed that a sufficient number of

movements is left for calibration.

First, the rotation angle θi is computed for each rela-

tive movement; the rotation axes are irrelevant for thresh-

old determination. Since only the amount of rotation is

of interest we take the absolute values of θi. Then, all an-

gles are normalized to the interval 0◦ to 180◦ and stored

in a list L which can be accessed by an index ranging

from 0 to Nr − 1. After sorting the list in ascending or-

der, the smallest and largest rotation angles αl and αu

that are contained in the recorded image sequence can be

found in the entries L(0) and L(Nr − 1).

Recall that after normalization the best-suited move-

ments have a rotation angle around 90◦. Three cases

have to be distinguished. If the smallest rotation angle

αl is greater than 90◦, no movements are contained in

the sequence that have to be removed at the lower bound.

Therefore, the lower threshold θl is set to 0◦. All move-

ments have to be removed at the upper bound, and the

upper threshold is defined by the list entry having index

(Nr − 1) − Round((1 − δ) · (Nr + 1)).

A similar situation, with reversed roles of thresh-

olds, arises if the largest angle αu is smaller than 90◦.
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3 Data Selection

In this case all movements have to be removed at the

lower bound, and the upper threshold θu is set to 0◦,

while the lower one is given by the list entry at index

Round((1 − δ) · (Nr − 1)).

The case where angles below 90◦ exist as well as an-

gles above 90◦ is slightly more complex, as both thresh-

olds have to be chosen asymmetrically depending on the

number of movements with rotation angles greater and

smaller than 90◦. Therefore, the first step is to identify

the position i of the first angle in the list that is equal or

larger than 90◦, i. e., the “center” of the list with respect

to the best angle contained in the sequence. Now the

fraction of angles left and right of the identified position

i can be computed as:

ξl =
i

Nr − 1
, ξu = 1 − ξl , (9)

where ξl is the fraction of movements in the lower part

and ξu in the upper part with respect to 90◦. When de-

ciding about which movements are to be removed, it is

important to keep as many close to 90◦ as possible, i. e.,

in the majority of cases most movements will be deleted

in the part of the list containing the greater amount of

movements, and only a small fraction (if any) in the part

containing the smaller amount of movements. We com-

pute two factors ρs and ρb that determine the fraction of

movements to be deleted in the smaller (ρs) and the big-

ger (ρb) one of the two parts of the list. These factors are

given by:

ρs = max

(
1

2
((1 − δ) − |ξl − ξu|), 0

)
,

ρb = min((1 − δ),max(ξl, ξu) − min(ξl, ξu)) + ρs.

(10)

The first addend in the equation for ρb removes as many

movements as possible from the bigger part, i. e., either

all that have been required or an amount that makes it

the same size as the originally smaller one. The remain-

ing movements can then be removed symmetrically from

both parts, the amount being defined by ρs.

If most movements are located in the lower part of the

list, the thresholds θl, θu are then defined by the list ele-

ments having index Round(ρb(Nr − 1)) and (Nr − 1) −
Round(ρs(Nr+1)), respectively. In case that most move-

ments are located in the upper part of the list, ρs and ρb

change roles when computing the indices of the list ele-

ments.

Strictly speaking checking the first two cases, where

all movements are located on one side of 90◦, is not nec-

essary, because both are covered by (10). Nevertheless

they have been included in the structure chart, as we be-

lieve the concept is easier to understand this way.

3.6 Vector Quantization Using Axis/Angle

Representation

This section presents a data selection algorithm that does

not need thresholds on rotation angles as no pre-selection

of relative movements is done, i. e., all available move-

ments are used. A structure chart is shown in Fig. 5.

Instead of treating rotation axis and angle separately,

the axis/angle representation is used as described in Ap-

pendix A.2, where the angle θ is encoded as the norm of

the axis vector r in a 3D vector ω having three degrees

of freedom.

We start with a set ofNr relative movements, now rep-

resented by their rotation axes with angles encoded in ωi.

The result is a set ofNs vectors,Ns < Nr, where the cor-

responding selected movements are a trade-off between

criterion (1) and (2) as defined in Sect. 2.2: Movements

having small rotation angles will be found in the result-

ing data set if their rotation axes fit well to the remaining

data.

At the beginning all ωi are normalized such that an-

gles are in the range 0◦ to 180◦. This is different from

the normalization in the previous data selection methods,

where the sign of the axes elements is used. Generally,

there are always these two options: either the sign of an

axis is controlled or the rotation angle, never both. De-

pending on the application, either option may have ad-

vantages and disadvantages.

In contrast to the methods presented before, where

movements with rotation angles close to zero are scat-

tered, they will be concentrated near the origin of the co-

ordinate system now. Therefore, the pre-selection using

a rotation angle threshold can be omitted, as the vector

quantization step will only select a few movements hav-

ing unsuitable rotation angles, while the majority will be

alright. This feature is the main advantage of the algo-

rithm. Also, 3D vector quantization can be used in a

straight forward fashion, as the 3D axis/angle vectors ωi

have three degrees of freedom.

The basic principle of the rest of the algorithm remains

the same as before, except that vector quantization is now

done on the vector where rotation axis and angle are en-

coded.

3.7 Vector Quantization Using Quaternions

As in the previous section a data selection algorithm is

presented here that does not remove movements hav-

ing small rotation angles and therefore has no need for

thresholds. Now, the quaternion representation of 3D ro-

tations is used (see Appendix A.3).

After the quaternion representation has been computed

for each relative movement, the ambiguity in the quater-

nion representation has to be resolved. Since the quater-
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4.1 Residual Error Metrics

Input:

Nr relative movements consisting of rotation and translation Ri, ti (cf. Sect. 3.1),

Ns = number of desired relative movements after data selection is complete.

Output:

Ns relative movements consisting of rotation and translation Rκ, tκ.

FOR each relative movement i

Compute axis/angle ωi from Ri; angle θi = |ωi|
IF θi > 180◦

THEN substitute ωi by a rotation about the negative axis and

angle 360◦ − θi

Compute codebook C = {c1, . . . , cNs
} of size Ns using the ωi as training vectors

FOR each vector ωi

Classify ωi to one of the partitions represented by codebook vector cκ:

ωi → ωi,κ

Compute the distance d(ωi,κ, cκ)

FOR each codebook entry cκ

Determine ωκ = ωj,κ, where d(ωj,κ, cκ) < d(ωi,κ, cκ)

∀i, j of partition κ, i 6= j

Select the relative movement Rκ, tκ that corresponds to ωκ as one of the resulting movements

Figure 5: Structure chart for data selection using axis/angle representation.

nions qi and −qi represent the same rotation, we restrict

the quaternions to the hyper-hemisphere with positive

real part. This can be done similarly to the axis ambi-

guity resolution discussed before in Sect. 3.3, with the

difference that a quaternion consists of four elements in-

stead of three. The remaining part of the algorithm is

similar to the data selection methods discussed before.

A main advantage of quaternions compared to using the

rotation axis is that the quaternion is well-defined for ar-

bitrary rotation angles. While the rotation axis is unde-

fined for a rotation angle of zero, i. e., for movements

where the rotation matrix equals I3×3, the correspond-

ing quaternion is defined and equals 1. The main dis-

advantage of using quaternions is that these consist of

four elements with only three degrees of freedom; there-

fore, a 4D vector quantization has to be used instead

of a three-dimensional one. Of course, as before when

rotation axes were discussed, polar angles representing

quaternions could be used, as these have norm one and

thus lie on a hypersphere.

4 Experimental Results

This section presents an experimental evaluation of the

vector quantization based data selection algorithms. It

starts with an introduction to the metrics used for resid-

ual error computation in Sect. 4.1. In Sect. 4.2 the data

sets used are described, followed by the experimental

results in Sects. 4.3 to 4.6. In particular we will look

into the following topics: How does the codebook size

used for vector quantization influence the calibration er-

ror (Sect. 4.3), how does the pre-selection threshold on

the rotation angle affect the result (Sect. 4.4), and which

one of the presented data selection methods performs

best (Sect. 4.5)? Finally, Sect. 4.6 shows how the data

selection performs compared to manually selecting well-

suited poses during data acquisition (although this is not

the main application area of the proposed methods). The

actual hand-eye calibration was done using the linear

dual quaternion algorithm by Daniilidis (1999, 2001).

4.1 Residual Error Metrics

For experimental evaluation we need error metrics for ro-

tation and translation that measure the accuracy of hand-

eye calibration. Commonly, the error in translation is

given as a relative error, while for rotation an absolute

error metric is used (e. g., Horaud and Dornaika, 1995;

Daniilidis, 1999; Andreff et al., 2001). In this paper, ab-

solute and relative errors will be shown for both, rotation

and translation. The absolute residual error for transla-

tion is given by

ǫtabs =
1

N

N∑

i=1

‖t̂i − ti‖ , (11)
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4 Experimental Results

and the relative residual error by

ǫtrel =
1

N

N∑

i=1

‖t̂i − ti‖
‖ti‖

, (12)

where N is the number of translation vectors used for

error computation (see below), ti is the true translation

vector, and t̂i is the vector estimated by hand-eye cali-

bration.

Different metrics for errors in rotation are used in lit-

erature. While in Horaud and Dornaika (1995) the norm

of the difference between two rotation matrices is given,

this work follows (Daniilidis, 1999; Andreff et al., 2001)

and uses the norm of quaternion differences instead for

relative residual errors, given by:

ǫRrel =
1

N

N∑

i=1

‖q̂i − qi‖
‖1 − qi‖

. (13)

The norm of quaternion differences is obviously con-

nected to the rotation angle as well as to the angle be-

tween the two rotation axes:

‖q̂i −qi‖2 = 2− 2(cos θ̂i cos θi + r̂
T

i ri sin θ̂i sin θi) ,
(14)

where θ̂i, θi are the rotation angles and r̂i, ri the rotation

axes corresponding to the quaternions q̂i and qi, respec-

tively.

For rotations about the same axis, but by different an-

gles, this metric has the property that it is directly con-

nected to the residual rotation angle, as (14) can be sim-

plified to:

‖q̂i − qi‖ =

√

2 − 2 cos
θ̂i − θi

2
, (15)

The absolute residuals can either be given using

quaternions as well, or in degrees based on the axis/angle

representation of the residual rotation matrix Rresi,

which is given by:

Rresi = R̂
T

i Ri . (16)

A simplified absolute rotational residual error can now

be defined by the rotation angle θresi, which can be com-

puted from one of the complex Eigen-values of Rresi:

ǫ′
Rabs =

1

N

N∑

i=1

|θresi| . (17)

The advantage of using this metric instead of the quater-

nion based one is simply that an absolute residual given

in degrees makes it easier for the reader to judge whether

the error is high or low.

Figure 6: Left: Optical tracking system smARTtrack1 in the

laboratory. Right: smARTtrack1 in the operating room during

an endoscopic surgery. Images by courtesy of F. Vogt.

The metrics presented above are used for computing a

prediction error, which is the residual between the pre-

dicted eye position computed from hand data and the

estimated hand-eye transformation, and the real (cali-

brated) eye pose. In order to give an overall residual er-

ror, a set of relative movements (we use 100) is selected

randomly from the complete set of all possible relative

movements (cf. Sect. 3.1). Note that again it is of disad-

vantage to use relative movements between subsequent

positions, because the movements will usually be small,

which results in large relative errors and thus does not

reflect the actual quality of the estimated hand-eye trans-

formation. The results shown in this section’s tables have

been obtained by iterating the above process 100 times

and averaging the resulting residual errors. The reason

why the randomly chosen movements are selected from

the complete data set rather than the set obtained after

vector quantization is that the latter would not result in a

valid residual error that can be used to describe the actual

calibration accuracy, because these data have been used

for parameter estimation. As the estimation process opti-

mizes the hand-eye parameters on the provided data, the

residual error would always be minimal.

To summarize: The residual errors in translation

shown in the following were computed using (11) and

(12). For relative residual errors in rotation, (13) was

used. The absolute rotational errors show the average ro-

tation angle in degrees, which was computed using (17).

All results are given with an accuracy of three valid dig-

its.

4.2 Description of Data Sets

Instead of a robot as in classic hand-eye calibration, we

have used an optical tracking system in our experiments.

The infrared optical tracking system smARTtrack1 by

Advanced Realtime GmbH (shown in Fig. 6) provides

pose data of a so-called target (the hand) that is fixed

to an endoscope. It is a typical optical tracking system

consisting of two infrared cameras and the target, which

10



4.2 Description of Data Sets

Figure 7: Left: Asymmetric 7 × 7 calibration pattern with

marked corners. Right: Processed image of calibration pattern

after ellipse-fitting.

is built from markers that can easily be identified in the

images captured by the cameras. Spheres with a retro-

reflective surface are used, and marker identification is

simplified by active illumination with infrared light. The

3D position of each visible marker is calculated by the

tracking system; knowledge of the geometry of the tar-

get then allows to calculate its pose. The accuracy of

the pose is 0.19 mm in x- and y-direction, 0.36 mm in

z-direction, and 0.14◦ for rotation.

A CCD camera is mounted rigidly on the endoscope,

which is moved manually. The objective of hand-eye

calibration is to determine the unknown transformation

from the target-pose provided by the optical tracking sys-

tem to 3D camera coordinates.

The camera (eye) poses are computed using a calibra-

tion pattern and standard camera calibration techniques

(Zhang, 1998, 2000). We use an asymmetric pattern

as shown in Fig. 7 (left), which consists of 49 circular

calibration points arranged in a 7 × 7 pattern. The cor-

ners of the pattern are coded using smaller dots, to allow

for resolving ambiguities when the camera is moved. We

extract contours in the captured image of the calibration

pattern, and perform ellipse-fitting on each contour (see

Fig. 7 (right)). The center of each ellipse is used as a 2-D

calibration point, which provides sub-pixel accuracy; the

measured backprojection error is smaller than 0.2 pixels.

Results from eight representative data sets acquired

this way are shown here. These have been selected care-

fully out of many more experiments that we have con-

ducted, to describe effects that can be observed when us-

ing the proposed data selection methods. Four sets con-

tain a large number of data continuously recorded while

the endoscope was moved manually. These are denoted

by ART1, ART2, ART3, and ART4 in the following. The

remaining four contain only a small number of poses,

which were recorded at manually selected positions, as

in a classic hand-eye calibration. They will be described

later on.

The continuously recorded data sets differ mainly in

the number of poses contained in each sequence (270 for

ART1, 190 for ART2, 200 for ART3 and ART4 ), and
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Figure 8: Comparison of normalized rotation axes contained

in the continuously recorded data sets after pre-selection: (a)

ART1, (b) ART2, (c) ART3, (d) ART4. The variation in the

rotation axes is much larger for ART2 and ART4 compared to

ART1 or ART3, making the former better suited for hand-eye

calibration.

in the type of movement that was done while they were

recorded. The camera-endoscope configuration, i. e., the

hand-eye transformation, is different for all data sets as

the camera was mounted on the endoscope anew every

time. An overview over the main properties of the data

sets including the results of automatic threshold compu-

tation are shown in Table 1.

As the accuracy of the hand-eye calibration depends

considerably on the amount of rotational movement in

terms of both, distinct rotation axes as well as large ro-

tation angles, the quality of a data set can be assessed

by plotting the distribution of normalized rotation axes

and histograms of rotation angles shown in Figs. 8 and 9,

respectively.

As can be seen in the plots of normalized rotation axes

after pre-selection in Fig. 8, the rotational movement in

ART1 and ART3 is smaller than in ART4, and consid-

erably smaller than in ART2. It is important to note that

a data set has to contain a certain amount of rotational

movement to get good results, therefore, based on rota-

tion axes, the data sets ART2 and ART4 are much better

suited for hand-eye calibration than ART1 and ART3,

due to the small coverage of the latter.

Figure 9 shows histograms of rotation angles con-

tained in the data sets before (left column) and after

(right column) pre-selection of movements using an au-

tomatically computed rotation angle threshold. It can

be observed that the majority of movements before pre-
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4 Experimental Results

Sequence ART1 ART2 ART3 ART4

number of poses 270 190 200 200

total number of relative movements 36315 17955 19900 19900

number of movements after applying threshold 7261 8976 8954 6964

minimum angle in data set 0.00000171◦ 0.0388◦ 0.135◦ 0.0406◦

maximum angle in data set 80.3◦ 80.9◦ 126◦ 73.8◦

minimum angle after applying threshold 38.5◦ 25.0◦ 48.4◦ 34.5◦

maximum angle after applying threshold 80.3◦ 80.9◦ 126◦ 73.8◦

median angle in data set 21.8◦ 25.2◦ 42.8◦ 25.2◦

median angle after threshold 47.0◦ 41.2◦ 73.4◦ 47.6◦

Table 1: Properties of the data sets used in the experiments, including data selection information.
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(g) ART4 – all movements
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(h) ART4 – after pre-selection

Figure 9: Histograms of rotation angles (in rad) in the data

sets: (a), (c), (e), (g) complete data; (b), (d), (f), (h) after pre-

selection.

selection have small rotation angles, and only ART3 con-

tains angles greater than 90◦ at all. Recall that for ob-

taining a very accurate calibration we would need move-

ments with rotation angles around 90◦. Based on the his-

tograms we can conclude that ART3 is the best-suited

data set; however, combined with the distribution of axes

(Fig. 8(c)), which has low coverage, this is put into per-

spective, so judging the calibration outcome for ART3 in

advance from the plots is inconclusive.

Based on these figures it can already be predicted that

ART1 is probably a data set that results in a low-accuracy

calibration, as both, rotation axes and angles, are not

suited well for hand-eye calibration. Also, it is likely

that ART2 and ART4 will give better results, as the cov-

erage of axes is good, and the histograms of angles are

acceptable, although not optimal.

In order to get an idea of the quality of the hand-

eye calibration obtained from continuously recorded se-

quences, the results were compared to the accuracy of

performing hand-eye calibration in the classic way, i. e.,

using a small number of poses recorded at manually se-

lected distinct positions that are well-suited for hand-

eye calibration. They have been acquired using the

same camera-endoscope configuration as continuously

recorded data, and are denoted by ART5 (18 poses),

ART6 (14 poses), both corresponding to ART2, ART7

(20 poses, corresponding to ART3 ), and ART8 (18

poses, corresponding to ART4 ).

Figure 10 shows plots of the distribution of rotation

axes of all relative movements contained in these four

data sets. Comparing these figures to the plots in Fig. 8, it

can be observed that the coverage is much better than for

the continuous sequences, although they obviously con-

tain much less data; but it is not quantity that counts. His-

tograms of the rotation angles (without any pre-selection)

are shown in Fig. 11. As opposed to the histograms in

Fig. 9, the manually recorded data sets contain much less

very small angles close to 0◦, and although they too are

far from being optimal, except for ART5 they all contain

angles greater than (but still close to) 90◦.
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4.3 Codebook Size
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Figure 10: Comparison of normalized rotation axes contained

in the data sets recorded at manually selected positions: (a)

ART5, (b) ART6, (c) ART7, (d) ART8. These data sets contain

less poses than the continuously recorded ones, but the distri-

bution of rotation axes is much better suited for hand-eye cali-

bration.
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Figure 11: Histograms of rotation angles (in rad) in the data sets

recorded at manually selected positions.

To summarize: Even without performing an actual cal-

ibration, it can be concluded from the plots alone that in

most cases continuously recorded data will lead to a less

accurate calibration compared to data containing manu-

ally selected positions. However, in many applications it

may be very inconvenient or even impossible (e. g., due

to time constraints during a surgical intervention as in

case of the endoscope) to use manually selected posi-
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Figure 12: Mean relative residual errors in rotation and transla-

tion dependent on the codebook size used for vector quantiza-

tion for the data sets ART1, ART2, ART3, and ART4.

tions. In the following sections we present an evaluation

of the data selection algorithms, compare continuously

recorded data to data acquired at manually selected po-

sitions calibrated the classic way, and show that even for

the manually selected data sets performing a data selec-

tion can result in a more accurate calibration.

4.3 Codebook Size

In this section the influence of one of the two data se-

lection parameters is analyzed, namely the codebook

size used for vector quantization. The hand-eye cali-
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4 Experimental Results

bration residual errors were computed varying the code-

book size, while the other parameter was left constant.

For data selection, the 3D vector quantization algorithm

on normalized rotation axes (Sect. 3.3) was chosen, the

pre-selection step that removes movements having small

rotation angles was done using the automatic threshold

computation (Sect. 3.5).

Plots of the relative residual errors in rotation and

translation for the continuously recorded data sets ART1,

ART2, ART3, and ART4 are shown in Fig. 12; the

graphs for absolute residuals have been omitted, as they

look very much like the relative ones and therefore do

not provide much more information.

The codebook size has been varied from 20 to 4000

relative movements, which is 0.22% to 57% (depending

on the data set) of the number of relative movements re-

maining after pre-selection with respect to the rotation

angle, and only in between 11% and 22% of the total

number of relative movements contained in the sequence.

Typically, what can be observed is the behavior of the

data sets ART1 and ART2, and, with the exception of

some outliers in the middle, also ART3 as shown in Figs.

12(a) to 12(f): Fluctuations are quite high for small code-

book sizes, the residual error becoming more stable the

more data is used for calibration. In contrast to the other

data sets, ART4 is stable from the beginning (note the

scale of the vertical axis). This is probably due to the

fact ART4 is obviously the best suited data set for hand-

eye calibration judging by the residual errors.

For practical purposes using low values for the code-

book size is preferable to high ones, as the number of

vectors in the codebook has a twofold impact on compu-

tation time: vector quantization itself will take longer to

compute, and so will the actual hand-eye calibration as

more data are used. All data sets shown can arguably

be considered to be relatively stable from a codebook

size of 2000 on for all sequences, which corresponds

to about 5.5% (ART1 ), 10% (ART3, ART4 ), and 11%

(ART2 ) of the total number of relative movements be-

fore pre-selection, or about 22% to 29% of the relative

movements after pre-selection.

Note that the residuals for ART1 are considerably

higher than those of the other sequences. This is not

due to the data selection or hand-eye calibration algo-

rithms used, but, as mentioned before, inherent in the

data, which does not contain sufficient information for an

accurate calibration due to only small rotational move-

ment (i. e., rotation axes are more concentrated and the

amount of rotation is smaller than in the other data sets).

4.4 Rotation Angle Threshold

The second data selection parameter that influences

hand-eye calibration accuracy determines how much data

is discarded during the pre-selection stage due to small

rotation angles. For the experimental evaluation in this

section the automatic threshold computation algorithm

described in Sect. 3.5 was used. During the experiments

codebook size was fixed for each data set, while the per-

centage of relative movements that are removed by au-

tomatic threshold computation was variable. The code-

book sizes used are 1200 (ART1 ), 1000 (ART2 ), 900

(ART3 ), and 700 (ART4 ). Residual error plots depen-

dent on the fraction of data left after pre-selection accord-

ing to the rotation angle are shown in Fig. 13; a value of

1 on the horizontal axis is equivalent to 100% of the data

used, i. e., no pre-selection at all, while 0 would indicate

that no data was left after pre-selection. As the latter case

is pointless, the evaluation was only done up to a fraction

where enough data was left to allow for hand-eye calibra-

tion, namely 7%.

The problem when removing relative movements

based on the rotation angle alone is that an unknown

amount of these movements may be suited quite well

for hand-eye calibration in terms of non-parallel rota-

tion axes, so there will always be a trade-off. This issue

has been addressed before in Sects. 3.6 and 3.7, where

data selection algorithms have been presented that do

not require a threshold for pre-selection, as none is done.

Whether this results in a higher calibration accuracy than

applying a rotation angle threshold is evaluated in Sect.

4.5.

As shown in the histograms in Fig. 9, the data sets

contain a considerable number of movements having rel-

atively small rotation angle. Therefore, judging based

solely on rotation angle, what would be expected is that

the plots in Fig. 13 are u-shaped, i. e., when no move-

ments are removed from the data set, the residual error

should be high because unsuitable data are used for cali-

bration and skew the result. On the other end, when most

movements have been removed, the calibration residual

should increase due to the very small amount of noisy

data that is used, making hand-eye calibration more sen-

sitive to erroneous movements.

While the increasing residual error at the lower end

can be observed in all plots in Fig. 13, the increase at the

right end is visible only for the ART3 and ART4 data

sets.

In general, a value of 20% to 40% for the data to be

left after pre-selection with respect to the rotation angle

is a relatively good choice for automatic threshold com-

putation in most cases. If possible, smaller values are

preferable to higher ones, because the computation time

of vector quantization depends on the size of the data sets

after pre-selection.
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4.5 Comparison of Data Selection Methods

Method Translation Rotation

consecutive movements 19.9 mm 49.8% 2.89◦ 14.7%

3D VQ, normalized axes, automatic threshold 5.67 mm 15.8% 1.53◦ 10.3%

2D VQ, polar coordinates, automatic threshold 5.43 mm 15.3% 1.51◦ 10.3%

3D VQ, axis/angle, no threshold 5.75 mm 15.8% 1.49◦ 10.1%

3D VQ, axis/angle, automatic threshold 5.75 mm 16.0% 1.44◦ 10.1%

4D VQ, quaternions, no threshold 5.98 mm 16.4% 1.52◦ 10.2%

4D VQ, quaternions, automatic threshold 5.61 mm 15.7% 1.43◦ 10.0%

Table 2: Comparison of different data selection methods, sequence ART1. Parameters: codebook size 1200, δ = 0.2.

Method Translation Rotation

consecutive movements 4.98 mm 23.9% 0.854◦ 4.26%

3D VQ, normalized axes, automatic threshold 1.98 mm 10.4% 0.626◦ 3.63%

2D VQ, polar coordinates, automatic threshold 3.12 mm 15.6% 0.797◦ 4.12%

3D VQ, axis/angle, no threshold 1.52 mm 8.09% 0.563◦ 3.46%

3D VQ, axis/angle, automatic threshold 3.37 mm 16.6% 0.777◦ 4.07%

4D VQ, quaternions, no threshold 2.11 mm 11.0% 0.662◦ 3.73%

4D VQ, quaternions, automatic threshold 2.21 mm 11.5% 0.652◦ 3.70%

Table 3: Comparison of different data selection methods, sequence ART2. Parameters: codebook size 1000, δ = 0.5.

4.5 Comparison of Data Selection Methods

In this section a comparison of the performance of the

various vector quantization based data selection meth-

ods is presented. As has been implied that data selec-

tion is essential if continuous movements are used, the

results when using relative movements between consec-

utive poses (i. e., without any data selection) are shown

as well. The following methods were compared:

consecutive movements: relative movements be-

tween consecutive poses are used. No data selection

is done. These results are presented in order to

show how much can be gained by data selection

when continuously recorded sequences are used.

3D VQ, normalized axes: data selection using nor-

malized 3D rotation axes with two DOF as pre-

sented in Sect. 3.3.

2D VQ, polar coordinates: data selection based on

the polar coordinate representation of normalized

rotation axes as presented in Sect. 3.4.

3D VQ, axis/angle: data selection with three DOF

based on the axis/angle representation of rotation

axes, where the rotation angle is encoded as the

norm of the axis. This method has been presented

in Sect. 3.6.

4D VQ, quaternions: data selection with three DOF

based on the quaternion representation of rotations

as shown in Sect. 3.7.

In case of ‘3D VQ, normalized axes’ and ‘2D VQ, po-

lar coordinates’ rotation angle thresholds were com-

puted automatically using the method presented in Sect.

3.5. Obviously, this is not applicable for the ‘consecutive

movements’ experiments.

Note that for the methods ‘3D VQ, axis/angle’ and

‘4D VQ, quaternions’ no pre-selection of the data with

respect to small rotation angles is necessary as the an-

gle is handled implicitly during vector quantization. The

residuals for this case are denoted by ‘no threshold’.

However, the removal of relative movements with small

rotation angles can nevertheless be done, and the results

using automatically computed thresholds are also shown.

The tables show absolute and relative residual errors

for rotation and translation. In case of translation, the

residuals were computed using (11) for absolute errors

and (12) for relative ones. The relative rotation error was

computed based on quaternions using (13). In order to

get an impression of the order of magnitude of the ab-

solute rotational error, it has been decided to show these

in degrees rather than to give the absolute quaternionic

residual. For this purpose the absolute residuals have

been computed from the rotation angle (in axis/angle rep-

resentation) of the residual rotation matrix given by (17).

This value is highly correlated to the quaternionic resid-

ual. Note, however, that due to the different rotation rep-

resentations, there will be slight deviations in some cases

when absolute and relative residuals from different ex-

periments are compared.

The calibration results are shown in Tables 2 to 5.
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4 Experimental Results

Method Translation Rotation

consecutive movements 9.94 mm 37.3% 2.61◦ 7.61%

3D VQ, normalized axes, automatic threshold 2.80 mm 12.3% 1.05◦ 4.57%

2D VQ, polar coordinates, automatic threshold 4.01 mm 16.7% 1.28◦ 4.95%

3D VQ, axis/angle, no threshold 3.96 mm 16.5% 1.48◦ 5.28%

3D VQ, axis/angle, automatic threshold 3.69 mm 15.6% 1.36◦ 5.09%

4D VQ, quaternions, no threshold 4.12 mm 17.1% 1.55◦ 5.40%

4D VQ, quaternions, automatic threshold 3.94 mm 16.5% 1.42◦ 5.20%

Table 4: Comparison of different data selection methods, sequence ART3. Parameters: codebook size 1000, δ = 0.45.

Method Translation Rotation

consecutive movements 8.34 mm 17.7% 1.10◦ 4.59%

3D VQ, normalized axes, automatic threshold 1.67 mm 4.87% 0.555◦ 2.93%

2D VQ, polar coordinates, automatic threshold 1.68 mm 4.89% 0.561◦ 2.95%

3D VQ, axis/angle, no threshold 1.68 mm 4.85% 0.578◦ 2.99%

3D VQ, axis/angle, automatic threshold 1.65 mm 4.85% 0.544◦ 2.90%

4D VQ, quaternions, no threshold 1.75 mm 4.96% 0.587◦ 3.01%

4D VQ, quaternions, automatic threshold 1.65 mm 4.86% 0.541◦ 2.90%

Table 5: Comparison of different data selection methods, sequence ART4. Parameters: codebook size 700, δ = 0.35.

As predicted, using consecutive movements is always

the worst case, with residual errors that render the cal-

ibration result totally useless in most cases. It can be

observed that the data selection method used has virtu-

ally no influence on the residual errors in rotation. This

result is as expected, as the rotation matrix can always

be computed, even for movements which are not gen-

eral enough, while this is not true for translation. Rec-

ommending a single data selection method based on the

results presented here is not easy, as there is no single

method that consistently gives the best results. How-

ever, the following insights are to be gained: Using any

data selection is better than doing nothing, as all meth-

ods perform much better than using consecutive move-

ments directly. We believe that the method of choice is

using normalized rotation axes with a pre-selection ac-

cording to the rotation angle with an automatically com-

puted threshold (‘3D VQ, normalized axes’), because

it is consistently good and ranked in the top three in all

experiments.

The results using rotation representations where the

rotation angle is implicitly coded, like quaternions and

axis/angle (‘3D VQ, axis/angle, no threshold’ and ‘4D

VQ, quaternions, no threshold’), did not perform as

well as the others, with the exception of the ART2 exper-

iment. Results improved when the automatic threshold

computation was done, removing movements with small

rotation angles.

With the exception of ART1, using polar coordinates

was inferior to most other methods. As can be seen in

Table 5, which shows the results for the ART4 experi-

ment, if the data set is suited well for calibration, i. e., the

coverage of rotation axes is high and there is a sufficient

amount of rotation angles close to 90◦, it makes virtually

no difference which data selection method is used. The

difference between the best and worst results (not taking

into account using consecutive movements for obvious

reasons) is only 0.1 mm, and the difference between the

best result and the recommended method using normal-

ized rotation axes is only 0.02 mm.

The experiments were run on a computer with an In-

tel P4, 2.6 GHz CPU. While the implementation was not

particularly optimized for speed, we want to give at least

a rough guideline regarding the computation times that

can be expected for data selection and hand-eye cali-

bration. Using consecutive movements is obviously the

fastest way to calibrate, as no data selection is performed,

and takes about 50 msec. For the remaining methods,

computation time depends mainly on the amount of data

during vector quantization and its dimensionality. Not

surprisingly, the fastest algorithm is the one based on

polar coordinates, as only a 2D quantization has to be

done; computation times varied between 5.8 sec (ART4 )

and 11 sec (ART1 ). Accordingly, using quaternions and

no threshold (i. e., 4D quantization and all data) is al-

ways the slowest option, with computation times be-

tween 10 sec (ART4 ) and 31 sec (ART1 ). This is sim-

ilar for the axis/angle method using no threshold, where

the time required is only slightly less, namely 9.5 sec

(ART2 ) to 26 sec (ART1 ). When using a pre-selection
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4.6 Comparison to Manual Selection
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Figure 13: Mean relative and absolute errors in rotation and

translation dependent on the fraction of relative movements left

after pre-selection with respect to the rotation angle for the data

sets ART1, ART2, ART3, and ART4.

with an automatically computed threshold, the compu-

tation times of these two algorithms are very similar to

the ones for the normalized rotation axes method, which

varies between 6.1 sec (ART4 ) and 12 sec (ART1 ).

4.6 Comparison to Manual Selection

There are obviously situations, where acquiring well-

suited data at manually selected positions is less con-

venient than in others. In a classic setup with a robot

manipulator arm, the robot can easily be programmed to

Data Set Translation Rotation

ART5 2.31 mm 10.2% 0.556◦ 3.46%

ART6 1.65 mm 8.02% 0.556◦ 3.47%

ART2 1.98 mm 10.4% 0.626◦ 3.63%

ART7 1.85 mm 8.41% 0.892◦ 4.34%

ART3 2.80 mm 12.3% 1.05◦ 4.57%

ART8 2.08 mm 5.49% 0.672◦ 3.21%

ART4 1.67 mm 4.87% 0.555◦ 2.93%

Table 6: Comparison of the continuously recorded sequences

ART2, ART3, and ART4 to data sets using the same camera-

endoscope configuration recorded at manually selected posi-

tions with a small number of poses. It can be observed that a

manual selection of positions is not always superior to the con-

veniently recorded continuous sequences.

move to defined positions that are used for calibration.

However, in setups like hand-eye calibration of a camera

mounted on an endoscope or a stereo camera system used

in Augmented Reality, the device is manually controlled

by the user, and getting good data is not that simple any

more. Therefore, two topics will be addressed in this sec-

tion, namely:

1. How well does hand-eye calibration based on con-

tinuously recorded sequences perform compared to

calibration done the classic way using a small num-

ber of poses recorded at manually selected distinct

positions that are well-suited for hand-eye calibra-

tion?

2. Can calibration accuracy be increased by running a

data selection on data sets with manually selected

positions, which is good already when consecutive

poses are used?

Table 6 shows calibration results for data sets con-

sisting of about 20 poses recorded at manually selected

positions (calibrated the classic way), which were de-

scribed in Sect. 4.2, and compares them to the corre-

sponding continuously recorded data (calibrated using

data selection with normalized rotation axes and auto-

matic threshold computation). The camera-endoscope

configuration (i. e., actual hand-eye transformation) of

ART5 and ART6 is the same as for the continuously

recorded data set ART2. Likewise, ART7 has the same

configuration as ART3, and ART8 the same as ART4.

Comparing ART5 and ART6 on one side to ART2 on

the other shows that the manual selection of positions

while recording data is not always better than the con-

veniently recorded continuous sequence. Particularly the

translation estimate of ART2 is considerably better than

that of ART5. For ART7 and ART3 the result for the

manually selected positions (ART7 ) is much better than

that of the continuously recorded ART3. The situation
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5 Conclusion

Consecutive Frames Data Selection

Data Set Translation Rotation Translation Rotation

ART5 2.31 mm 10.2% 0.556◦ 3.46% 2.13 mm 9.76% 0.552◦ 3.45%

ART6 1.65 mm 8.02% 0.556◦ 3.47% 1.32 mm 7.11% 0.538◦ 3.41%

ART7 1.85 mm 8.41% 0.892◦ 4.34% 1.73 mm 8.14% 0.865◦ 4.30%

ART8 2.08 mm 5.49% 0.672◦ 3.21% 1.86 mm 5.15% 0.518◦ 2.80%

Table 7: Comparison between the classic hand-eye calibration method using consecutive poses (left) and the method using the

data selection proposed in this work (right). Clearly, an additional data selection improves the calibration accuracy on these data

sets, which contain only a small number of poses recorded at manually selected distinct positions.

for the last set ART8and ART4shows again that a contin-

uously recorded sequence can lead to better results than

a manual selection of the positions for recording.

As mentioned before, it is obvious that much depends

on the data set itself and the poses contained in it. When

there is not sufficient information available, the calibra-

tion results are not good as well. Of course, in prac-

tice this may be more often the case for continuously

recorded sequences, as the user usually does not choose

the positions as carefully as in the case where the data

are acquired at distinct positions.

Even though the data selection methods have been

developed for continuously recorded sequences, where

they are essential, the question remains whether apply-

ing them to the data sets containing only a small num-

ber of poses at manually selected positions would lead

to even better calibration results. Therefore, a compari-

son between the classic method using consecutive poses

and the method using the data selection proposed in this

paper is presented in Table 7. Again, the data selection

method chosen for this comparison was vector quantiza-

tion of normalized rotation axes with automatic threshold

computation. In all cases, the calibration with data selec-

tion was superior to the one using consecutive poses as is

usually done for hand-eye calibration. Except for ART8,

where the absolute residual error in rotation changed by

0.154◦, which is a 23% decrease compared to calibra-

tion without data selection, the rotation residuals did not

change by much. The translational residual error, how-

ever, improved considerably for all data sets, which is a

characteristic effect of using well-suited data for hand-

eye calibration.

The results make clear that even when the user tries

to perform a small amount of well-described calibration

movements as accurately as possible, using data selec-

tion will still increase calibration accuracy.

5 Conclusion

This paper proposes new data selection methods that can

improve the accuracy of hand-eye calibration in many

cases, and make it possible in the first place in situations

where a manual selection of positions is inconvenient or

even impossible. Examples include areas other than the

classic setup with a robot manipulator arm and a camera,

like calibration of a camera mounted on an endoscope,

where the “hand” data are provided by an optical track-

ing system as used in the experiments’ section of this pa-

per, or applications like self-calibration of a rigid stereo

camera system, which appear to be unrelated to hand-

eye calibration at a first glance, but nevertheless can be

solved using algorithms adopted from hand-eye calibra-

tion. The result of the data selection algorithm is a data

set that is well-suited for hand-eye calibration, because it

removes relative movements with small rotation angles

and selects those movements where the rotation axes are

different. Data selection as presented in this paper is

based on applying a clustering algorithm on the data. For

this purpose, we proposed to use vector quantization, but

in general any clustering algorithm is suitable.

A variety of methods is proposed, which differ in

the dimensionality (2D, 3D, 4D) of the vector quantiza-

tion compared to the degrees of freedom (two or three),

and whether an automatically computed threshold or no

threshold at all is used for incorporation of the rota-

tion angle. The methods using no threshold are based

on 3D and 4D vector quantization using the axis/angle

or quaternion representation of rotations, respectively.

They are a trade-off between the non-parallelism crite-

rion for the rotation axes and the fact that for movements

with small rotation angles the axis is not well-defined,

while the former methods remove movements with small

angles in a pre-processing step and use only the differ-

ences in the rotation axes as a selection criterion.

The performance of the proposed vector quantization

based data selection methods was evaluated using data

obtained from an optical tracking system (hand) and an

endoscopic camera (eye) that was calibrated using a cal-

ibration pattern.

Firstly, the parameters that influence hand-eye cali-

bration accuracy were evaluated: The codebook size of

the quantizer and the thresholds used for pre-selection of

movements with respect to their rotation angle. It has

been found that the fluctuations of the residual error for
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small codebook sizes are relatively high and become less

for increasing codebook size. Based on the experimental

results it is recommended to use about 10% of the total

number of relative movements as the codebook size, cor-

responding to about 20% to 30% of the movements left

after pre-selection.

Before vector quantization, a pre-selection step is per-

formed that discards movements with small rotation an-

gles from the data, as these are not suitable for hand-eye

calibration. The data remaining after this pre-selection

has a high influence on the computation time required

during vector quantization. These experiments were per-

formed for fixed codebook sizes (but different ones for

each data set), while the percentage of movements that

are removed by automatic threshold computation was

varied. High residual errors can be expected when either

most movements have been removed or when all move-

ments have been left in the data used for calibration. In

most cases a value of 20% to 40% for the data remaining

after pre-selection is a good choice for automatic thresh-

old computation.

Next, the different data selection methods proposed in

this paper were compared. The new methods are based

on vector quantization and differ in the parameterization

used for representing 3D rotation (normalized rotation

axes, polar coordinates, axis/angle, quaternions) and in

the way the data pre-selection with respect to the rota-

tion angle is done (automatically computed thresholds

or no thresholds). These methods were compared to us-

ing consecutive movements, i. e., using the movements as

they are, without any data selection. As predicted, using

consecutive movements is always the worst case, with

residual errors that render the calibration results totally

useless in most cases.

As expected, the data selection method used has virtu-

ally no influence on the residual errors in rotation, only

the translational residuals differ. For obtaining the best

results regarding accuracy, it is recommended to apply

the vector quantization based data selection using nor-

malized rotation axes. It has to be taken into account,

however, that much depends on the data set itself, i. e.,

when the information contained in the movements is not

general enough in terms of different rotation axes and

high rotation angles, there is no way to obtain good cal-

ibration results, no matter which data selection or hand-

eye calibration algorithm is used.

It has also been found that even in situations where

calibration data is acquired using a small number of man-

ually selected positions, applying an additional data se-

lection can improve the accuracy of hand-eye calibration

over the classic approach using consecutive movements.

Even when the user is asked to perform a small number

of well-described calibration movements, applying data

selection on the acquired data will still result in improved

accuracy of the hand-eye transformation.

A Appendix: 3D Rotation Parameterization

As the data selection algorithms presented in Sect. 3

make extensive use of various representations of 3D ro-

tations, a brief overview over the commonly used ones is

given here. A rotation in 3D is usually given by a rotation

matrix R ∈ IR3×3 having the property that the column

(and row) vectors are orthonormal:

RRT = I3×3, det(R) = 1 , (18)

Therefore, a rotation matrix R has nine elements but only

three degrees of freedom. The set of all these matrices

forms the rotation group SO(3).

A.1 Cardan and Euler Angles

The Cardan and Euler angle representations are dis-

cussed only shortly, as they are not employed for data

selection due to problems inherent to them. However, as

both representations are widely used, we do not want to

omit them completely.

To obtain the Cardan angle representation an arbitrary

rotation matrix R is decomposed into a product of three

rotations by the angles α, β, and γ about the x-, y-, and

z-axis of the coordinate system. In contrast to the Euler

angle representation the Cardan angles α, β, and γ are

defined with respect to the axes of the original coordinate

system.

In the Euler angle representation, an arbitrary rotation

matrix R is also decomposed into a product of three ro-

tations by the angles φ, ψ, and ϕ, where

• φ defines a rotation about the z-axis of the original

coordinate system,

• ψ defines a rotation about the x′-axis, which is the

image of the x-axis of the original coordinate sys-

tem after the first rotation,

• ϕ defines a rotation about the z′′-axis, which is the

image of the z-axis of the original coordinate sys-

tem after the previous two rotations have been com-

puted.

Cardan and Euler angles are probably the most well

known parameterizations for rotations in 3D. These two

representations sometimes get mixed up in literature, but

usually the conclusions drawn for Cardan and Euler an-

gles stay the same. One of the main drawbacks is that

since matrix multiplication is not commutative, the Car-

dan/Euler angle representation is not unique, meaning

that a permutation of the order of the rotations about the
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coordinate-system axes yields different Cardan/Euler an-

gles. Probably the most important drawback of this pa-

rameterizations is the existence of so-called gimbal lock

singularities, where one degree of freedom is lost, i. e.,

two of the three angles belong to the same degree of free-

dom. For a more detailed discussion see Watt and Watt

(1992).

A.2 Axis/Angle

An arbitrary rotation R can be represented as a rotation

about one axis r ∈ IR3 by the angle θ. This will be de-

noted here as Axis/Angle representation. Since only the

direction of the rotation axis r is of importance, r has

only two degrees of freedom and thus can be normalized

to one. Hence, axis and angle can be combined into a sin-

gle vector ω with three degrees of freedom, its direction

giving the rotation axis and its length the rotation angle,

thus making it a minimal parameterization:

ω = θr, and for θ 6= 0: θ = |ω|, r =
ω

|ω| . (19)

Computing a rotation matrix R from ω can be done us-

ing Rodrigues’ formula (Hartley and Zisserman, 2003;

Faugeras, 1993):

R = I3×3 +
sin θ

θ
[ω]× +

1 − cos θ

θ2
[ω]2

×

= I3×3 + sin θ[r]× + (1 − cos θ)[r]2
×

,
(20)

where [x]
×

denotes the skew-symmetric matrix that rep-

resents the outer vector product of x and y as a matrix

multiplication:

x × y = [x]
×

y =




0 −x3 x2

x3 0 −x1

−x2 x1 0



y . (21)

The computation of axis and angle from a rotation ma-

trix R is done as follows: Eigen-decomposition of R

yields the three Eigen-values 1 and cos θ ± i sin θ. The

axis r is the Eigen-vector corresponding to the Eigen-

value 1. The angle θ is calculated from one of the remain-

ing Eigen-values. Note that the axis/angle representation

is not unique: a rotation about an axis r by an angle θ
is the same as a rotation about the axis −r by the angle

2π−θ. Therefore, one has to check the consistency of the

direction of the axis and the angle, which can be done by

inserting both into equation (20). Another problem arises

for a rotation angle of 0◦, i. e., if R = I3×3. In this case

all three Eigen-values are equal to one, which results in

a non-unique rotation axis. This is obvious, since for an

angle of 0◦ no rotation is done at all, meaning that the

axis can obviously be chosen arbitrarily.

A.3 Quaternions

Quaternions are numbers3 that are in a certain sense sim-

ilar to complex numbers: Instead of only one imagi-

nary part, quaternions have three of them. The concept

of quaternions was introduced by Sir William Rowan

Hamilton and presented to the Royal Irish Academy in

1843 (Hamilton, 1844, 1847, 1848). The set of quater-

nions is usually denoted as IHI. Unit quaternions form the

special unitary group SU(2), which can be represented

as all complex unitary 2 × 2 matrices having determi-

nant one. Since SU(2) is a double cover of the special

orthogonal group SO(3), there exist two quaternions for

each rotation matrix. More details on quaternions can

be found in Kuipers (1999); Conway and Smith (2003);

Faugeras (1993).

A quaternion q is defined as follows:

q = qr + q1i + q2j + q3k, qr, q1, q2, q3 ∈ IR , (22)

where qr is the real part and q1, q2, q3 are the imag-

inary parts. Multiplication and summation are done

component-wise, with

i2 = j2 = k2 = ijk = −1 , (23)

which is equivalent to

i2 = j2 = k2 = −1 ,

ij = −ji = k, jk = −kj = i, ki = −ik = j .
(24)

A quaternion is often written as a 4-tuple

q = (qr, q1, q2, q3) or q = (qr, qim) , (25)

where qim is a 3-vector containing the imaginary parts.

In contrast to complex numbers, the commutative law of

multiplication is not valid (cf. (24)), i. e.,

∃q1, q2 ∈ IHI, where q1q2 6= q2q1 . (26)

Similar to complex numbers, a conjugate quaternion is

defined as

q∗ = qr − q1i − q2j − q3k . (27)

The norm of a quaternion q is given by

|q| =
√

qq∗ =
√

q∗q =
√
qr

2 + q2
1

+ q2
2
+ q2

3
. (28)

The multiplicative inverse of q is

q−1 =
1

qq∗
q∗ . (29)

3i. e., they form one of the four existing normed division algebras; the

others are the real and complex numbers, and the Octonions (Con-

way and Smith, 2003; Baez, 2001). The latter have 7 complex parts

and are neither commutative nor associative w. r. t. multiplication.
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Hence, for a unit quaternion (|q| = 1), the inverse of

multiplication equals the conjugate, i. e., q−1 = q∗.

Just as the multiplication of two unit complex numbers

defines a rotation in two dimensions, a multiplication of

two unit quaternions yields a rotation in 3D. Let p be a

3D point to be rotated, r a rotation axis with |r| = 1,

and θ the angle of rotation about this axis. Define the

following two quaternions:

q =

(
cos

θ

2
, sin

θ

2
· r

)
,

p′ = (0,p) .

(30)

Then

p′

rot = q p′ q−1 = q p′ q∗ (31)

since q is a unit quaternion. p′

rot is the quaternion corre-

sponding to the rotated point.

Since a quaternion representing a rotation is com-

puted from axis and angle, it is also not unique, because

the two quaternions q1 =
(
cos θ

2
, sin θ

2
· r

)
and q2 =(

cos 2π−θ
2
, sin 2π−θ

2
· (−r)

)
=

(
− cos θ

2
,− sin θ

2
· r

)

define the same rotation. Which of the two quaternions is

used does not matter, but one has to be careful when mea-

suring the distance of two rotations (e. g., for describing

rotation residual errors) by the distance between quater-

nions. However, in contrast to the axis/angle represen-

tation, where R = I3×3 results in an undefined rota-

tion axis r, the corresponding quaternion is defined and

equals 1 (i. e., (1, 0, 0, 0)).
The computation of a quaternion from a rotation ma-

trix is done using the axis/angle representation as shown

in (30). The computation of a rotation matrix R from a

quaternion can be done as follows (Faugeras, 1993):

R =
(
r1 r2 r3

)
, (32)

where

r1 =




qr

2 + q21 − q22 − q23
2(q1q2 + qrq3)
2(q1q3 − qrq2)



 ,

r2 =




2(q1q2 − qrq3)

qr
2 − q2

1
+ q2

2
− q2

3

2(q2q3 + qrq1)



 ,

r3 =




2(q1q3 + qrq2)
2(q2q3 − qrq1)

qr
2 − q2

1
− q2

2
+ q2

3



 .

(33)

A.4 Discussion

The different representations for rotation matrices intro-

duced in this section model 3×3 rotation matrices, which

have nine elements but only three degrees of freedom,

with less than nine parameters.

Due to the many disadvantages of Euler and Car-

dan angle representations, using these should be avoided

whenever possible. Axis/Angle is a minimal parame-

terization having the drawback that for rotations with

small angles the rotation axis is not well-defined. This

problem does not occur when using unit quaternions;

however, quaternions are a non-minimal parameteriza-

tion, because they have four elements with three degrees

of freedom. Both axis/angle and quaternions are non-

unique, i. e., there are always two different representa-

tions for the same rotation. However, this causes only

slight problems in practice, which are not comparable to

the non-uniqueness of Cardan and Euler angle represen-

tations. Therefore, due to their advantages, the rotation

representation of choice for estimating rotation is either

axis/angle or quaternions, depending on the application.

An interesting result supporting this conclusion is

based on the fact that quaternions as well as axis/angle

representation are a so-called fair parameterization of

3D rotations, while Cardan and Euler angles are not

(Hornegger and Tomasi, 1999). A parameterization is

fair if it does not introduce more numerical sensitivity

than is inherent to the problem itself, which is guaranteed

if any rigid transformation of the space to be parameter-

ized results in an orthogonal transformation of the pa-

rameters.
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