Mapping and Localisation with Sparse Range Data

Jochen Schmidt, Chee K. Wong, and Wai K. Yeap
Institute for Information Technology Research
Auckland University of Technology, Auckland, New Zealand
jochen.schmidt@aut.ac.nz, chee.wong @aut.ac.nz, wai.yeap @aut.ac.nz

Abstract

We present an approach for indoor mapping and localisation with a mobile robot using sparse range data, without
the need for solving the SLAM problem. The paper consists of two main parts. First, a split and merge based
method for dividing a given metric map into distinct regions is presented, thus creating a topological map in a metric
framework. Spatial information extracted from this map is then used for self-localisation. The robot computes
local confidence maps for two simple localisation strategies based on distance and relative orientation of regions.
The local confidence maps are then fused using an approach adapted from computer vision to produce overall
confidence maps. Experiments on data acquired by mobile robots equipped with sonar sensors are presented.

Keywords: mobile robots, mapping, localisation

1 Introduction

Mapping and self-localisation play an important role
when using mobile robots for the exploration of
an unknown environment. Particularly for indoor
applications, where a 2-D map is usually sufficient,
geometric maps obtained from time-of-flight devices,
such as laser or sonar, are widely used. In this paper,
we present an algorithm for mapping and localisation
which was developed originally for testing ideas about
cognitive mapping [1]. In the latter, the concern is
less on accuracy and speed but more on developing an
appropriate process for testing ideas about cognitive
mapping (as opposed to robot mapping). In particular,
in cognitive mapping, the initial map computed is
fragmented and highly inaccurate. Nonetheless, we
believe our algorithm developed could be useful for
roboticists who are interested only in the mapping and
localisation problem. Consequently, in this paper we
present our approach in that light and show further
results. From a robot mapping perspective, what is
most interesting about this work is that the robot can
localise itself even with a map that is highly inaccurate
in metric terms. In the first part of the paper a method
for dividing a given metric map into distinct regions,
e. g., corridors or rooms is presented, thus creating a
metric-topological map. The region splitting is based
on a metric map, which we obtain from sonar sensor
readings that are processed into a map consisting
of geometric boundaries. This is a more compact
representation of the environment compared to grid
maps, while details such as size and shape of objects
are maintained. As we use only two sonar sensors,
the available range data is very sparse, therefore
making the map highly inaccurate in certain areas.
We will show that this sparse and inaccurate data can
nevertheless be used for self-localisation. Our work
is inspired by [2], where a cognitive map is regarded
as a network of local spaces, each space described by
its shape and its exits to other local spaces. Related
approaches can be found, e. g., in [3], which is a hybrid

approach that combines topological and metric maps
and identifies gateways and path fragments. In [4],
topological maps are constructed from grid maps using
Voronoi diagrams; the grid maps are split into regions
and critical lines (gateways) are detected. In contrast to
these methods, our approach is based on a region split
and merge algorithm [5, 6, 7]. Many algorithms have
been developed to solve the simultaneous mapping
and localisation problem (SLAM) for mobile robots.
For some examples of recent work in this area see [8]
and the references therein. The approach followed in
this paper (based on [2]), is different, as we do not
solve the SLAM problem, but simulate a cognitive
mapping process instead. The latter refers to the
process in which humans and animals learn about
their environment [9]. Our mobile robot explores
the environment, moving from A to B, and computes
the topological map mentioned earlier. The question
we ask is: how does the robot use the map to find
its way home from B to A? Recall that the map
computed is inaccurate due to sensor errors and sparse
sampling. Therefore, the map computed in the reverse
journey will be different from the original one. We
implemented two localisation strategies using both
distance and orientation information extracted from
the metric-topological representation. We show how
local confidence maps can be computed using both
strategies, and show how they can be fused into a global
map based on the Democratic Integration approach
[10, 11], which originated in image processing.

The paper is structured as follows: Section 2 describes
the process used for generating a metric-topological
map based on sparse range data, while section 3 shows
how to use the information extracted from this map
can be used for localisation. Experimental results are
presented in section 4.

2 Mapping

The mapping process described in this section is used
in two ways: First, the robot explores its environment

and collects data. When this is finished, all acquired
data are processed; the result of this initial mapping
stage will be called the original map further on. This is
the map the robot will use for returning home. On its
way home, the robot basically performs the same data
gathering and processing steps as described here, ex-
cept that the data is processed each time the robot stops,
in contrast to building the original map, where the data
is processed only at the end of the data gathering stage.
An overview over the map-processing algorithm will be
given in the following. A more detailed evaluation of
the algorithm including the influence of the parameters
involved is given in [1].

2.1 Data Acquisition and Pre-Processing

For data acquisition we use a mobile robot equipped
with eight sonar sensors and an odometer; as the em-
phasis in this paper is on processing sparse range data,
only the two side sensors are actually used. However,
it is important to note that the algorithms presented
here are not restricted to sparse data or that type of
sensors. In fact, the performance will be even better
when more and densely sampled range data (e. g., from
laser) are available. The robot acquires sonar read-
ings while moving on a straight line (as far as the drift
allows) until it runs into an obstacle. At this point
an obstacle avoidance algorithm is used, after which
the robot can wander straight on again. A single one
of these straight movements will be called robot path
throughout this paper. We store the sonar readings sep-
arately for each robot path; this is not mandatory for
the presented methods, but it simplifies processing later
on. Based on the raw sonar sensor readings we build a
simplified geometric map containing the robot move-
ment path as well as linear surfaces approximated from
the sonar data. In a first step, the recorded sonar data
is low-pass filtered and converted to surfaces, being a
piecewise linear approximation of the sonar distances.
The surfaces are simplified further by grouping them,
thus removing small gaps. The pre-requisite for the al-
gorithm presented in the following is a geometric map
that contains the robot movement path as well as sur-
faces in terms of line approximations of the original
range sensor data. The goal is to split the map into
distinct regions, e. g., corridors and rooms. Splitting
is done along the robot movement path, using an ob-
jective function that computes the quality of a region,
based on criteria such as the average room width (corri-
dors are long and narrow compared to rooms) and over-
all direction (e. g., a corridor is separated from another
one by a sharp bend in the wall). Additionally, a regu-
larisation term is used in order to avoid the formation of
very small regions, which may originate from missing
(gaps) or unreliable sensor data.

2.2 Split and Merge

The basis of the map-processing algorithm is the well-
known split and merge method [7, 6, 5]. In pattern
recognition this algorithm is traditionally used for find-
ing piecewise linear approximations of a set of contour
points. Other applications include segmentation of im-

age regions given a homogeneity criterion, e. g., with
respect to colour or texture [5]. The pre-requisite for
applying split and merge is an ordered set of (contour)
points, which is to be approximated. For this purpose a
parametric family of functions .# (e. g., lines) has to be
chosen, as well as a metric for computing the residual
error € of the approximation (e. g., mean square error),
or, when used for regions, a homogeneity or quality
criterion. The result of the algorithm is a piecewise ap-
proximation of the original points, where every single
residual error is below a given threshold 6. The single
steps of the algorithm are as follows [5]:

1. Start with an initial set of points ., which con-
sists of ng parts, .70 = {YOO,...,Y,%A}. Each
part ZO is approximated by a function from ..
Compute the initial residual error elo for each part
of A0,

2. Split each part .7 where €f > 6, into two parts

5ﬂj k1 and .77]./f:rll , compute the approximation and

: k1 gkl ok .
residuals €, €;.1. Repeat until & < 6 Vi=
0, ey N — 1.

3. Merge two adjacent parts .7, .7} | into one new

part ij“ if 8;‘“ < 6. Repeat until merging is
not possible any more.

4. Shift the split point shared by two adjacent parts
5”1.", X’fH to left and right while leaving the
overall number of parts fixed. Keep the split that
reduces the overall error, repeat until no further
changes occur.

2.3 Splitting the Map

Before a region split and merge algorithm on the geo-
metric map can be applied, it is necessary to create
an initial split of the map. The easiest way to do so
is to treat the whole map as a single large region de-
fined by the start and end points of the journey. More
sophisticated initialisations can be used as well, e. g.,
based solely on the robot movement without taking into
account range data [1]. After the initialisation step,
the actual division of the map into distinct regions is
performed based on a split and merge that uses a resid-
ual error function g(.#;,.#;) which compares two re-
gions .#; and .%; and computes the homogeneity of the
two regions (low values of g(.#;,.%;) means homoge-
neous, high values very inhomogeneous). This func-
tion is used during the split phase for deciding whether
a region .7* will be split again at a given position into
two new regions 5”]-"“ and 5”;?11, and in the merge
(or shift) phase to determine whether two adjacent re-
gions can be merged (or the splitting point be shifted).
When the homogeneity is above a given threshold 6,
the region will be split again (or not merged/shifted).
The quality of a region now incorporates both, robot
path as well as the range data. The basic idea is to use
the average width of a region in the map as a criterion
for splitting, as a width change resembles a changing
environment, e. g., a transition from a corridor to a big

room. The homogeneity (residual) function used is:

max{ fw (), fw ()}
min{ f (%7), fw ()}

8(S,) = +5:1(,75) (1)

where fy (%) is the average width of region ., and
r(+;,;) is a regularisation term that takes care of ad-
ditional constraints during splitting. The average width

is given by fw (%) = Ufl’ where A o is the area of

region ., and [#; is its length. In practice, the com-
putation of both needs a bit of attention. Particularly
the definition of the length of a region is not always
obvious, but can be handled using the robot movement
paths, which are part of each region. The length [
is then defined by the length of the line connecting the
start point of the first robot path of a region and the end
point of the last path of the region. This is a simple
way to approximate a region’s length without much
disturbance caused by zig-zag movement of the robot
during mapping.

Regarding the area computation, the gaps contained in
the map have to be taken into account, either by clos-
ing all gaps, or by using a fixed maximum distance
for gaps. Both approaches have their advantages as
well as drawbacks, e. g., closing a gap is good when
it originated from missing sensor data, but may distort
the splitting result when the gap is an actual part of
the environment, thus enlarging a room. We decided to
use a combined approach, i.e., small gaps are closed
in a pre-processing step already, while large ones are
treated as distant surfaces.

The regularisation term r(.#;,.#;) ensures that the re-
gions do not get too small. In contrast to a thresh-
old, which is a clear decision, a regularisation term
penalises small regions but still allows to create them if
the overall quality is very good. We use a sigmoid func-
tion that can have values between —1 and 0, centred at
n, which is the desired minimum size of a region:

1
min{Ay;.,A‘y/j } n n)

(S, 7)) = —1. ()

Amax

1 +exp (—

The exponent is basically the area of the smaller region
in relation to the maximum area A, of the smallest
allowed region. Thus, the smallest ratio is 1, and it
increases when the region gets larger. This term only
has an influence on small regions, making them less
likely to be split again, while it has virtually no influ-
ence when the region is large, as the sigmoid reaches 0
asymptotically.

The influence of the regularisation can be controlled
using the factor sy (see (1)), which is given by s; =
s6;, where 0 < s < 1 is set manually and defines the
percentage of the threshold 6, that is to be used as a
weight. 6, is the threshold mentioned earlier, which
determines that a region should be split into two when
the first region is 6, times as large as the second one.

3 Localisation

Once the original map has been generated, we instruct
the robot to return home based on the acquired map.
In the following, we will describe the strategies that
we use for localisation based on this information, and a
data fusion algorithm that allows for an overall position
estimate computed from the single localisation meth-
ods. On its way home, the robot basically performs the
same data gathering and processing steps as described
in section 2. Each time the robot stops on its return
journey, which is normally because of an obstacle in its
way, it performs a map processing. Therefore, at each
of these intermediate stops a new high-level representa-
tion (in terms of regions) is available and can be used in
combination with the original map for localisation. The
result of this step is the index of the region the robot
believes it is currently in, which is a rough estimate of
its global position. As it is argued in [2], this estimate
is sufficient for navigation, and an accurate map will
not be necessary as long the robot can find the exits to
adjacent regions.

Two different strategies for localising the robot based
on the original map generated on its way to the cur-
rent position are presented in section 3.2. Each method
computes a local confidence map that contains a confi-
dence value for each region of the original map. All lo-
cal confidence maps are then fused into a single global
one using the method described in section 3.1.

3.1 Fusion of Strategies

The fusion of all local confidence maps, which may
have been generated by different robot localisation
methods with varying reliability, is based on the idea
of Democratic Integration introduced in [10, 11]. It
was developed for the purpose of sensor data fusion
in computer vision and computes confidence maps
directly on images. The original method has been
extended and embedded into a probabilistic framework
in [12, 13], still within the area of machine vision.
We extend the original approach in a way that we do
not use images as an input, but rather generate local
confidence maps using various — more or less reliable
— techniques for robot localisation. A main advantage
of this approach is that the extension to more than two
strategies is straightforward, as is the replacement of
a method by a more sophisticated one. Each local
confidence map contains a confidence value between
0 and 1 for each region of the original map. As in
[10, 11] these confidence values are not probabilities,
and they do not sum up to one; the interval has been
chosen for convenience, and different intervals can be
used as desired.

The actual fusion is straightforward, as it is done by
computing a weighted sum of all local confidence
maps. The main advantage of using democratic
integration becomes visible only after that stage,
when the weights get adjusted dynamically over time,
dependent on the reliabilities of the local map. Given
M local confidence maps cjoc;(t) € RY (N being the
total number of regions in the original map) at time

t generated using different strategies, the global map
Cglob(?) is computed as:

M—1
cglob(t) = Z Wi(t)cloci(t)) 3)
i=0

where w;(r) are weighting factors that add up to one.
An estimate of the current position of the robot with
respect to the original map can now be computed by
determining the largest confidence value in cglob(t). Its
position b in cgiop(?) is the index of the region that the
robot believes it is in. The confidence value Cgloby, at
that index gives an impression about how reliable the
position estimate is in absolute terms, while comparing
it to the second best one (and maybe even third best
one) shows the reliability relative to other regions.

In order to update the weighting factors, the local
confidence maps have to be normalised first. The
normalised map ¢, (¢) is given by ¢} .() = % Cloc; (t).
The idea when updating the weights is that local
confidence maps that provide very reliable data
get higher weights than those which are unreliable.
Different ways for determining the quality of each
local confidence map are presented in [11]. We use the
normalised local confidence values at index b, which
has been determined from the global confidence map
as shown above, i.e., the quality ¢;(¢) of each local
map Cioc;(¢) is given by ¢, (t). Normalised qualities
¢}(t) are computed by:

() = i) 4)

0 M)

The new weighting factors w;(¢ 4+ 1) can now be com-
puted from the old ones:

1
wi(t+1) =w;(t) + e (gi(t) —wi(t)) . (5
This is a recursive formulation of the average over all
qualities from time zero to ¢. Using this update equa-
tion and the normalisation of the qualities in (4) ensures
that the sum of the weights equals one at all times [11].

3.2 Localisation Strategies

Two strategies for computing local confidence maps
will be described in the following, one based on dis-
tance travelled, the other based on orientation informa-
tion obtained from the maps. Note that these strate-
gies are mainly used to illustrate how local confidence
maps can be computed from information that is readily
available. Depending on the sensors used, more sophis-
ticated ones can be added to enhance the localisation
accuracy. A main feature of using a fusion approach is
that each strategy taken on its own may be quite simple
and not very useful for localisation; it is the combi-
nation of different strategies which makes localisation
possible.

3.21

The first strategy is based on using the distance the
robot travelled from its return point to the current po-
sition. Note that neither do we care about an exact

Distance

measurement, nor do we use the actual distance trav-
elled as provided by odometry. Using the odometry
data directly would result in very different distances
for each journey, as the robot normally moves in a zig-
zag fashion. Instead we use distance information com-
puted from the region splitting of the maps, i. e., region
length, which is defined by the distance between the
“entrance” and the “exit” (split points) the robot used
when passing through a particular region. The basic
strategy is to compare the distance d travelled when
returning home, measured in region lengths taken from
the intermediate map computed on the return journey,
to the lengths taken from the original map computed
during the mapping process.

The confidence for each region in the local confidence
map cpis depends on the overall distance d travelled on
the return journey; the closer a region is to this distance
from the origin, the more likely it is the one the robot
is in currently. As the distance travelled is an unreli-
able estimate, adjacent regions should be considered as
well, the more the closer they are to the most likely one.
We decided to use a Gaussian to model the confidences
for each region, the horizontal axis being the distance
travelled in mm. The Gaussian is centred at the current
overall distance travelled d. Its standard deviation &
is dependent on the distance travelled, and was chosen
as 0 = 0.05d. Note that although a Gaussian is used
here, we do not try to model a probability density. A
Gaussian was rather chosen for a number of reasons
making it most suitable for our purpose: It allows for
a smooth transition between regions, and the width can
be easily adjusted by altering the standard deviation.
This is necessary as the overall distance travelled gets
more and more unreliable (due to slippage and drift)
the farther the robot travels. The confidence value for
a region is determined by sampling the Gaussian at
the position given by the accumulated distances from
the origin (i.e., where the robot started the homeward
journey) to the end of this region. After a value for each
region is computed, the local confidence map cpjg is
normalised to the interval [0;1].

3.2.2 Relative Orientation

The second method for computing estimates of the
robot’s position is based on using relative orientation
information generated while dividing the map into
regions. During its journey, the robot enters a
region at one location and exits at a different one,
usually including zig-zag movements in between.
We define the direction of a region as the direction
of the line connecting the entrance and exit points.
Certainly this direction information varies every time
the robot travels through the environment, but the
overall shape between adjacent regions is relatively
stable. Therefore, we propose to use angles between
region directions as a simple measure of the current
position of the robot. It has the advantage that angles
between adjacent region directions are a local measure
of direction changes, thus keeping the influence
of odometry errors due to drift and slippage to a
minimum.

nnnnn

(@

Figure 1: (a) original map for Experiment 1, (b) map generated during the homeward journey in Experiment 1,
(c) original map for Experiment 2, (d) homeward journey in Experiment 2. The black dots indicate the points
where the map is split into separate regions. The robot movement always starts at the origin. The origin of the
homeward journey is (approximately) the same position as the end point coordinate of the respective original

map; in particular this means, that the map of the homeward journey for Experiment 2 (d) is upside-down
compared to the original map (c).

Firstly, all angles ¢,...,ay_; between adjacent re-
gions in the original map are computed. In the re-
mapping process while going home, new regions are
computed in the new map based on data gathered while
the robot travels. Using the direction information con-
tained in this map, the angle § between the current
region and the previous one can be computed. “Com-
paring” this angle to all angles of the original map gives
a clue (or many) for the current location of the robot,
resulting in a local confidence map cp;;:

1
CDirj = E(cos|(xi—ﬁ|+1), i=1,....N—1 . (6)
This results in high values for similar angles and low
values for dissimilar ones.

4 Experimental Results

The main features of the office environment where we
conducted the experiments are corridors, which open
into bigger areas at certain locations, doors that are
located on the left and right of the corridors, and ob-
stacles like waste paper baskets that can be found on
the floor in various positions. The acquisition of the
original maps and the experiments for using the map
in order to find the way back to the starting position
was done on different days, so the environment was
different for each experiment (e. g., doors open/closed).
Furthermore, we used two different robots, one for gen-
erating the original map, the other one for using the
map for localisation, to demonstrate the robustness of
the methods. Both robots are from Activmedia (a Pi-
oneer 2 and a Pioneer 3), equipped with eight sonar
sensors and an odometer. Only the two side sensors
were used in order to obtain sparse range data. Results
for two experiments are shown in the following.

Figure 1 shows four maps, including the locations of
the splitting points marked by dots. These are located
on a set of connected lines that resembles the path the
robot took while mapping the environment. To the left
and right of that path, the (simplified) surfaces rep-
resenting the environment can be seen. For splitting
purposes, gaps were treated as distant surfaces, having

a distance of 6000 mm from the position of the robot.
Units are given in millimetres, and the robot started
the mapping process at the origin. All maps were pro-
cessed using the same parameter values, namely 6, =
2.0 and s = 0.1; the desired minimum size of a region
was 1500mm. We found that the overall robustness
to changes in the parameters is quite high, i.e., the
choice of the actual values is usually noncritical; for
an evaluation see [1]. It can be observed that the splits
are located at the desired positions, i. e., where the en-
vironment changes, either from corridor to big room or
at sharp bends in the corridor. Note that gaps imply
a rapid change as well, because they are treated like
distant surfaces, which sometimes leads to splits at po-
sitions that may be undesired, but do not pose a prob-
lem when using the map for localisation. The maps
shown in figures 1(a) and 1(b) were generated from
the mapping and going home processes respectively for
Experiment 1; the figures 1(c) and 1(d) are the maps
generated from the mapping and going home processes
respectively for Experiment 2. Comparing the maps
generated during mapping and going home highlights
the difficulty in using these maps directly for locali-
sation. Each time, the robot goes through the same
environment, it will generate different representations
due to sensory inaccuracies.

Figure 2 shows two confidence maps for each exper-
iment computed at different locations during the re-
turn home journey. The light dotted lines represent
the region estimate using the region length information
(distance method) and the dark dashed lines depicts
the region estimate using the angles between regions
(relative orientation method). The solid line is the over-
all region estimate for the corresponding region. The
confidence maps in figure 2 illustrate different situa-
tions during localisation. A narrow peak for the overall
confidence signifies the robot being very confident of
being in a particular region. A wider confidence curve
shows that the robot is at the transition from one re-
gion to another, as more than one region has a high
confidence value, and the robot is unsure which of the
regions it is in. Comparisons of the estimated position
to the actual position have shown that the localisation is

(2) (b)

R N R TR TR] T R e s s 7 & s 0 moz w

Figure 2: Confidence maps computed at different locations during the return home journey. (a),(b) Experiment 1.
(c), (d) Experiment 2. The plots show: distance (light dotted), relative orientation (dark dashed), overall
confidence (solid). Horizontal axis: region index; vertical axis: confidence (0 to 1).

usually correct, with possible deviations of £1 in areas
where the regions are extremely small.

5 Conclusion

We have presented methods for mapping and localisa-
tion using sparse range data without the need for solv-
ing the SLAM problem. An initial metric map obtained
from sonar sensor readings is divided into distinct re-
gions, thus creating a topological map on top of the
metric one. A split and merge approach has been used
for this purpose, based on an objective function that
computes the quality of a region, including a regulari-
sation term that avoids the formation of very small re-
gions. Based on spatial information derived from these
maps, we showed how simple localisation strategies
can be used to compute local confidence maps. These
are fused into a single global one, which provides an
estimate in the form of confidence values, one for each
region, that reflects the confidence of the robot being in
a particular region. The main advantages of the fusion
approach are that it can easily be extended by more
sophisticated methods or additional sensors, and that
the influence of unreliable strategies on the global con-
fidence map automatically decreases over time. Exper-
imental results show that the robot was highly success-
ful in using our proposed method in localising itself in
the environment. Even though this approach does not
provide the robot’s exact pose, we believe the current
output is sufficient for navigation purposes.

6 References

[1] J. Schmidt, C. K. Wong and W. K. Yeap, “A split
& merge approach to metric-topological map-
building”, Proceedings Int. Conf. on Pattern
Recognition (ICPR), Hong Kong, 3, pp 1069—
1072 (2006).

[2] W. K. Yeap and M. E. Jefferies, “Computing a
representation of the local environment”, Artifi-
cial Intelligence, 107(2), pp 265-301 (1999).

[3] B. Kuipers, J. Modayil, P. Beeson, M. MacMa-
hon and F. Savelli, “Local metrical and global
topological maps in the hybrid spatial semantic
hierarchy”, Proceedings Int. Conf. on Robotics
and Automation, New Orleans, LA, pp 4845-
4851 (2004).

[4] S. Thrun, “Learning metric-topological maps
for indoor mobile robot navigation”, Artificial
Intelligence, 99(1), pp 21-71 (1998).

[5] H. Niemann, Pattern Analysis and Understanding
(2nd edition), Springer, Berlin (1990).
[6] T. Pavlidis and S. L. Horowitz, “Segmentation of

plane curves”, IEEE Trans. on Computers, C-23,
pp 860 — 870 (1974).

[7] R. O. Duda and P. E. Hart, Pattern Classification
and Scene Analysis, John Wiley & Sons, New
York (1973).

[8] C. Estrada, J. Neira and J. D. Tardos, “Hierarchi-
cal SLAM: real-time accurate mapping of large
environments”’, IEEE Trans. on Robotics, 21(4),
pp 588-596 (2005).

[9] R. M. Downs and D. Stea, Image and Environ-
ment: Cognitive Mapping and Spatial Behaviour,
Aldine Publishing, Chicago (1973).

[10] J. Triesch, Vision-Based Robotic Gesture Recog-
nition, Shaker Verlag, Aachen (1999).

[11] J. Triesch and Ch. von der Malsburg, “Demo-
cratic integration: self-organized integration of

adaptive cues”, Neural Computation, 13(9), pp
2049-2074 (2001).

[12] J. Denzler, M. Zobel and J. Triesch, “Probabilistic
integration of cues from multiple cameras”, in
R. Wiirtz (ed.), Dynamic Perception, Aka, Berlin,
pp 309-314 (2002).

[13] O. Kihler, J. Denzler and J. Triesch, “Hierarchi-
cal sensor data fusion by probabilistic cue integra-
tion for robust 3-D object tracking”, Proceedings
6th IEEE Southwest Symp. on Image Analysis and
Interpretation, Nevada, pp 216-220 (2004).

